GLISS ${ }^{\circledR}$ WMM

TECHNICAL INFORMATION

GLISS ${ }^{\circledR}$ WMM is designed to address the problems related to the installation of power, telephone, and fiber optic telephone cables. It eliminates up to 80% of friction; its potential applications are in the same fields as have already been solved by lubricants in the same series engineered and produced by CARIMA

Appearance: The product is a white gel; the water and glycol in the gelatin act as lubricants as well as vehicles for other specific lubricants which act along the way. Easy to apply, the gel facilitates its spreading on cables to be installed vertically, without any dripping or loss of lubricant.

Traditional use: Apply the gel with a sponge onto the cable; install the cable. The water will evaporate, leaving a layer of lubricant on the cable.
The lubricant layer will stay on for a very long time, facilitating replacement or introduction of other cables in the same duct.

No glue effect (the glue effect occurs when, once the water evaporates, the gel turns into glue, causing all the cables to stick to each other).

GLISS ${ }^{\circledR}$ WMM is a non-toxic, inert, bio-degradable, non-flammable product.

TECHNICAL SPECIFICATIONS

Appearance
Odor
Viscosity
Specific gravity
pH
Use temperature
Toxicity
WGK
white
none
approx $26,000 \mathrm{cp}$
gr/cm3 1
7 neutral
$-15-+50^{\circ} \mathrm{C}$
non-toxic
1 (according to 2000 German and British standards)

PACKAGING:

Cod. VGELWMM 1
Cod. VGELW MM5-15-25

Cardboard box containing 1 kg . Bottles 15 units
Kg 5-15-25 bucket

	RAPPORTO DI PROVA (Test Report)	Pag. di//of pag.	4

RISULTATI

DETERMINAZIONE DELLA BIODEGRADABILITÀ IN AMBIENTE ACQUOSO (Metodo di Sturm modificato - G.U. 07-12-90)

Caratterizzazione iniziale del campione:
Carbonio organico (TOC): 13.05% sul campione tal quale
Quantità di carbonio organico aggiunta per reattore (2 reattori per ogni campione):

CAMPIONE	Carbonio organico (mg)	Quantità di $\mathbf{C O}_{\mathbf{2}}$ teorica, $\mathbf{T h C O}_{2}(\mathbf{m g})$
Riferimento, Sodio benzoato	60.22	220.8
GLISS WMM	85.49	313.5

Nella tabella sottostante vengono riportati le percentuali di biodegradabilità calcolate rispetto alla quantità di carbonio organico totale iniziale contenuto nei campioni.

CAMPIONE	Giorni	CO_{2} cumulativa (\mathbf{g})	\%iodegradabilità $\left(\% \mathrm{ThCO}_{2}\right)$	Biodegradabilità media
Riferimento, Sodio benzoato	50	$0.2156-0.2129$	$97.62-96.40$	97.01
GLISS WMM	50	$0.2868-0.2836$	$91.49-90.48$	90.99

n.b. in tabella sono riportati I risultati delle single prove condotte in doppio.

DATA Date	IL RESP. Food Packaging	
Materials		
Division Head		
G. Vestrucci		
28/03/2008	Nestuee.	IL RESP. DEL CENTRO
Managing Director		

